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Abstract

In many domains, time series forecasting (TSF) is used to predict future events and support decision-making processes. With the
rise of deep learning, neural networks have been explored as alternatives to traditional mathematical models such as the Simplex
Algorithm, though with mixed results. Recent work has investigated the potential of Transformer architectures to capture complex
temporal patterns. However, studies have shown that Transformers often underperform compared to simpler models like the Simplex
Algorithm in TSF tasks. To bridge this gap, we introduce a Multi-Head Simplex Attention (MHSA) mechanism designed to mimic
the behaviour of the Simplex Algorithm within a Transformer framework. We conducted two baseline experiments using the
Simplex Algorithm and a standard Convolutional Transformer, and sixteen additional experiments with MHSA, varying the number
of attention heads (1, 2, 4, and 8) and the distance metrics (Euclidean, Cosine Similarity, Manhattan, and Infinity norm). While the
best-performing MHSA configuration—Euclidean distance with eight attention heads—showed relatively improved performance
within the MHSA group, it still lagged significantly behind the baselines, with MSEs ranging from 80 to 158, compared to just over
1 for both baseline models. These results highlight the challenge of replicating traditional model behaviours within deep learning
architectures and point to areas for future improvement.

Keywords: Transformers, Time Series Forecasting, Simplex Projection, Attention Mechanisms, Multi-Head Simplex Attention,
Distance-based Similarity, Causal Convolution, Autoregressive Models

1. Introduction

Time series forecasting (TSF) is a crucial task with applica-
tions spanning diverse fields. From predicting energy consump-
tion for efficient resource allocation, estimating traffic flow for
urban planning, and managing supply chains in retail, accurate
time series forecasts enable better decision-making and opti-
mization. While traditional statistical methods like ARIMA
(Nelson, 1998) and Exponential Smoothing have been foun-
dational, deep learning has emerged as a powerful alternative.
Recurrent Neural Networks (RNNs) have been successfully ap-
plied, as demonstrated by DeepAR (Salinas et al., 2020), and
architectures like N-BEATS (Oreshkin et al., 2020) have of-
fered interpretable deep learning solutions. Moreover, compe-
titions like the M4 competition (Smyl, 2020; Makridakis et al.,
2018) have spurred advancements by highlighting effective hy-
brid approaches, such as combining Exponential Smoothing
with LSTMs.

A significant advancement in sequence modelling came with
the Transformer architecture (Vaswani et al., 2017), which rev-
olutionized Natural Language Processing (Devlin et al., 2019;
Brown et al., 2020). The core self-attention mechanism which
is adept at capturing long-range dependencies, seemed a natu-
ral fit for TSF. Numerous variants like Informer (Zhou et al.,
2021), Autoformer (Wu et al., 2021), and PatchTST (Wu et al.,
2022) have been proposed to tackle TSF challenges using this
mechanism.

Despite their sophistication, recent studies have questioned if

the superiority of Transformers in other domains also holds for
TSF challenges. Notably, Zeng et al. (2023) demonstrated that
Transformer models might struggle with fundamental aspects
of time series data and can be outperformed by significantly
simpler linear models on benchmark datasets. This raises a
critical question: Why do these complex attention-based mod-
els sometimes fail to outperform simpler forecasting techniques
like Simplex projection (Sugihara and May, 1990), which also
rely on identifying patterns by finding nearest neighbours in an
embedded state space?

This paper investigates the performance discrepancies be-
tween Transformer-based models and simpler pattern-matching
approaches in TSF. We focus specifically on the self-attention
component, hypothesizing that its standard formulation might
be less suited for certain time series characteristics compared
to more direct distance-based pattern matching like Simplex.
To explore this, we propose a novel attention mechanism,
Multi-Head Simplex Attention (MHSA), incorporating ideas
like causal convolutions (Li et al., 2019). This mechanism is
designed to bridge the conceptual gap between Simplex pro-
jection and Transformer self-attention. MHSA aims to mimic
Simplex’s nearest-neighbour logic within the attention frame-
work. We explicitly isolate the attention mechanism, keeping
other Transformer components consistent with standard archi-
tectures.

Our central hypothesis is that replacing the standard dot-
product similarity with a mechanism (MHSA) that finds similar
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moments in time (cause) and focusses on what happened next
(effect) leads to performance improvements. We conduct exper-
iments comparing the performance of a Transformer decoder
architecture equipped with MHSA and various distance metrics
against two baselines: the Simplex algorithm (Petchey, 2016)
and a standard Transformer decoder using convolutional self-
attention as proposed by Li et al. (2019). These experiments
are performed on a synthetic dataset composed of stacked sine
waves, specifically designed to evaluate pattern recognition and
forecasting capabilities. This work contributes an analysis of
the Transformer’s attention component within the TSF domain,
offering insights into its operational characteristics compared to
a classic forecasting technique.

The remainder of this paper is structured as follows: Sec-
tion 2 reviews related work in TSF and Transformer models
and compares our new approach to existing research. Section
3 details the baseline methods and our proposed MHSA imple-
mentation. Section 4 presents the experimental setup and com-
parative results using MSE and MAPE metrics. Section 5 dis-
cusses the implications of our findings, and Section 6 concludes
the paper by highlighting limitations and potential avenues for
future research.

2. Related work

Time series forecasting has a rich history, with key devel-
opments spanning several decades. One of the earliest notable
contributions was by Sugihara and May (1990), who introduced
non-linear forecasting to differentiate chaotic dynamics from
measurement noise. Their approach leveraged delay embed-
dings to identify nearest neighbours in the reconstructed state
space for predicting future values. Building on this foundation,
Nelson (1998) proposed the ARIMA framework, which pro-
vided a systematic method for handling non-stationary time se-
ries through differencing. This transformation enabled the use
of moving averages, effectively accounting for autocorrelated
errors. Both methodologies underpin the theoretical basis of
our work.

With the rise of deep learning, machine learning approaches
have been increasingly adopted to enhance time series forecast-
ing. Notable contributions include DeepAR by Salinas et al.
(2020), which leverages recurrent neural networks to demon-
strate that deep learning can outperform traditional statistical
methods. Similarly, N-BEATS by Oreshkin et al. (2020) intro-
duces a fully connected, interpretable deep learning architec-
ture that achieves strong performance on univariate forecasting
tasks without relying on domain-specific knowledge. The M4
competition further advanced the field, with the winning entry
by Smyl (2020) combining exponential smoothing and Long
Short-Term Memory (LSTM) networks to achieve significant
improvements in forecast accuracy. Importantly, the competi-
tion results highlighted that hybrid models integrating statistical
techniques with machine learning tend to yield the highest ac-
curacy. Collectively, these works establish neural networks as a
competitive alternative for time series forecasting, and they mo-
tivate the exploration of Transformer-based architectures with
Simplex Attention Heads as yet another promising direction.

In 2017, the ground-breaking paper “Attention Is All You
Need” by Vaswani et al. (2017) introduced the Transformer
model, offering an alternative to recurrent and convolutional
networks. Since then, numerous applications of the Trans-
former architecture have been explored across various domains.
A well-known example is the BERT model proposed by De-
vlin et al. (2019), which has become a cornerstone in Natu-
ral Language Processing (NLP) tasks. Beyond NLP, BERT has
demonstrated remarkable performance across a wide range of
tasks following fine-tuning. However, this success is closely
tied to extensive pre-training on large-scale datasets, highlight-
ing the architecture’s strong dependency on data availability.
These developments provide valuable insights into the design
and potential limitations of attention-based models, informing
our own approach in adapting Transformer mechanisms to time
series forecasting contexts.

Another prominent application of Transformer models—and
the central focus of our study—is time series forecasting. While
Masini et al. (2023) highlight the potential of non-linear ma-
chine learning models in this domain, Transformers continue
to present notable challenges. As pointed out by Zeng et al.
(2023), these models often overestimate their ability to capture
the nuanced temporal dependencies inherent in time series data.
Their findings further show that simpler models can, in many
cases, outperform Transformers, offering competitive accuracy
with reduced computational cost. To address the shortcomings
of standard Transformer architectures, several enhancements
have been proposed. For example, Li et al. (2019) identify
two key limitations: the memory bottleneck and the limited
sensitivity of point-wise dot-product attention to local tempo-
ral context. To mitigate these issues, they introduce convolu-
tional self-attention, which better captures local dependencies
while easing memory demands. Building on this line of inquiry,
our study proposes replacing the standard attention mechanism
with Simplex Attention Heads, offering a distance-based alter-
native to dot-product similarity that aims to improve locality
awareness and forecasting performance.

Other state-of-the-art solutions that provide the foundation
for our study include the Informer (Zhou et al., 2021), Auto-
former (Wu et al., 2021), FEDFormer (Zhou et al., 2022), and
PatchTST (Wu et al., 2022) models. The Informer was de-
signed to efficiently forecast long sequence time series (LSTF)
and introduced a generative mechanism that predicts the full
output sequence in one step, rather than token-by-token. Auto-
former, another model tailored for LSTF tasks, processes seg-
ments of the time series in parallel and concatenates the results.
It also replaces the standard attention mechanism with an auto-
correlation mechanism, inspiring our consideration of Simplex
Attention Heads as an alternative. FEDFormer (Frequency En-
hanced Decomposed Transformer) further expands on this idea
by combining Transformer architecture with seasonal-trend de-
composition, offering a mixture-of-experts approach that aligns
with our motivation for incorporating Simplex Attention to a
Transformer model. Lastly, PatchTST treats time series in a
manner analogous to tokenised text in NLP, reducing architec-
tural complexity while slicing input sequences into patches—an
approach that influences our input processing strategy.
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Recently, Baljan and Rasoolzadeh Baghmisheh (2024) con-
ducted a comprehensive analysis of Transformer architectures,
aiming to identify and implement modifications that would
improve their performance in time series forecasting. Their
findings suggest that the use of shifted attention mechanisms
is overly simplistic, limiting the model’s ability to accurately
predict subsequent time steps. Nevertheless, the study iden-
tifies several promising directions for enhancing Transformers
in this domain, particularly the use of modified kernels as al-
ternatives to standard attention mechanisms. Building on this
foundation, our research explores the integration of a more ef-
fective alternative—Simplex-based attention—into the Trans-
former architecture. Investigating this approach forms the cen-
tral focus of our study.

3. Methods

3.1. Simplex Algorithm (Baseline)

As a first baseline model, we use the Simplex algorithm as
explained by Petchey (2016). This Simplex algorithm is a sim-
ple yet effective method for predicting the next value in a time
series. It relies on identifying similar patterns in past observa-
tions and using them to estimate future behaviour. In our im-
plementation, each state is using 4 embeddings, identifies the 4
nearest neighbours in the reconstructed state space, and predicts
the next value using a weighted average of their subsequent val-
ues.

3.2. Transformer Model (Baseline)

As a second baseline model, we use the Transformer model
adapted from Li et al. (2019), which introduces convolutional
self-attention to better model locality in time series data. Un-
like the canonical Transformer, which computes attention based
solely on point-wise values, this variant generates queries
and keys using causal convolutional layers. This modifica-
tion allows the model to incorporate local contextual informa-
tion—such as trends and shapes—into the attention mechanism,
thereby improving its ability to detect meaningful temporal pat-
terns and enhancing robustness to anomalies.

3.3. Transformer with Multi-Head Simplex Attention (MHSA)

To bridge the gap between standard Transformer attention
mechanisms and Simplex-style projections, we propose Multi-
Head Simplex Attention (MHSA) — a novel attention module
designed specifically for autoregressive time series modelling.
Unlike traditional multi-head attention, MHSA does not use
separately learned projections for queries, keys, and values. In-
stead, we operate directly in the embedding space to preserve
the temporal structure and interpretability of the original signal.

Inspired by the work of Li et al. (2019), we introduce a causal
1D convolution over the normalized input sequence for each at-
tention head to get the queries and keys. This allows the atten-
tion mechanism to consider local temporal patterns across small
groups of time steps, rather than relying on single-point com-
parisons. The result is a set of per-head, pattern-aware query

and key representations. Note that we still use the original (nor-
malized) input for the values.

To complete the causal interpretation, we introduce a right-
ward shift of the attention matrix, effectively aligning each at-
tention score with the effect of a similar cause observed in the
past. This enables the model to attend not just to similar points
in the sequence, but to what followed those points, similar to
the Simplex projection.

Each attention head learns its own convolutional kernel, en-
abling diverse pattern representations across the sequence. The
outputs of all heads are concatenated to form the final output of
MHSA. Within the Transformer architecture, this output is then
normalized and passed through a fully connected layer.

More formally, given input embeddings as X ∈ RB×L×D,
where B represents batch size, L sequence length, and D em-
bedding dimension we perform the following steps:

1. Normalize the input.
2. Split the embedding dimension D into H attention heads,

each of dimensionality dh = D/H.
3. For each head h ∈ {1, . . . ,H}, apply a 1D causal convolu-

tion, with stride 1 and only padding on the left to prevent
data leakage.

Q̂h = K̂h = Conv1Dh(Xh) (1)

4. Calculate the attention matrix Ah by calculating the pair-
wise distance between Q̂h and K̂h, inverting it and applying
a Softmax. We add a small constant ϵ = 0.001 for numer-
ical stability.

Ah = Softmax(
1

distance(Q̂h, K̂h) + ϵ
) (2)

5. Apply masking to Ah to ensure that each position in the
sequence can only attend past time steps, preserving au-
toregressive structure. Note that this approach differs from
regular masking, as the diagonal of Ah will also be masked.

6. Shift the attention matrix Ah one position to the right, to
obtain the shifted attention matrix A′, aligning each atten-
tion score with the effect of a similar past event.

7. Use A′ and Vh = Xh to calculate the final output

Outputh = A′h · Vh = A′h · Xh (3)

8. Concatenate the outputs across all heads to get the final
output O for the MHSA.

9. Add residual X and O together.

X′ = X +MHSA(X) (4)

10. Normalize X′ and pass through fully connected layer
(FFN).

X′′ = X′ + FFN(LayerNorm(X′)) (5)

The distance between Q and K can be calculated using differ-
ent distance metrics, such as Euclidean, Manhattan, the infinity
norm, or cosine similarity. Figure 1 shows a visual summary of
our proposed architecture.
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Figure 1: Overview of the Transformer architecture with our proposed Multi-
Head Simplex Attention (MHSA). The right panel shows a standard Trans-
former decoder block where MHSA replaces the typical dot-product attention.
The left panel zooms in on the internal mechanism of MHSA: the input embed-
dings are convolved with causal 1D kernels to extract local temporal patterns,
after which a distance-based attention matrix is computed, masked, and shifted
to the right. The resulting attention is then applied to the original values to pro-
duce the attended output. Each attention head operates independently with its
own convolutional kernel.

4. Evaluation

4.1. Experiment setup

The primary goal of our experiments is to evaluate the per-
formance of the proposed MHSA mechanism within the Trans-
former architecture against two baselines: the Simplex algo-
rithm (Petchey, 2016) and a standard transformer decoder em-
ploying convolutional self-attention (Li et al., 2019). The ex-
periments aim to test our hypothesis regarding the performance
of different attention mechanisms in time series forecasting us-
ing a controlled synthetic dataset.

We utilize a synthetic time series dataset generated accord-
ing to Equation 6. This dataset is adapted from Li et al. (2019)
and Baljan and Rasoolzadeh Baghmisheh (2024) and consists
of stacked sine waves with parameters A1 = 5, A2 = 100,
A3 = 3, A4 = max(A1, A2) = A2. The dataset includes additive
Gaussian noise (Nx ∼ N(0, 1)) and an offset of +72. The total
length of the generated time series was 6141 with a sequence
length of 140 and predictions shift of 1. For the transformer
models, the full dataset was split into training (4500 samples,
75%), validation (500 samples, 8,3%), and test (1000, 16.7%)
sets. For the Simplex evaluation, the time series was split se-
quentially, using the first 5730 data points as historical context
to predict the following 250 steps. This setup ensures that the
predicted segment of the sine wave aligns with the experiments
conducted using MHSA.

Transformer Model Hyperparameters Value
Input length (t0) 140
Number of layers 1
Embedding dimension 64
FFN hidden dimension 256
Dropout 0.1
Kernel size 5

Table 1: Hyperparameters used for transformer models

Transformer Training
Hyperparameters

Value

Batch size 32
Learning rate 0.0005
Epochs 300 with early stopping with

patience = 45 and ∆ = 1
Optimization method AdamW optimizer
Learning rate step size 10
Learning rate gamma 0.95

Table 2: Hyperparameters used during training for the experiments

f (x) =


A1 sin(πx/6) + 72 + Nx x ∈ [0, 12),
A2 sin(πx/6) + 72 + Nx x ∈ [12, 24),
A3 sin(πx/6) + 72 + Nx x ∈ [24, t0),
A4 sin(πx/12) + 72 + Nx x ∈ [t0, t0 + horizon),

(6)

For our experiments we compared the following models:

• MHSA Transformer: A decoder-only Transformer archi-
tecture where the standard attention is replaced by our pro-
posed MHSA module.The hyperparameters can be seen in
Table 1. We experimented with variations across:

– Distance metric: Euclidean, Cosine Similarity, Man-
hattan, Infinity norm.

– Number of attention heads: H ∈ {1, 2, 4, 8}.

• Simplex Baseline: The Simplex algorithm (Petchey,
2016) was implemented with an embedding dimension of
4 and using k = 4 nearest neighbours for prediction.

• Transformer with convolutional attention baseline: A
decoder-only Transformer baseline using the convolu-
tional attention mechanism by Li et al. (2019). It uses the
exact same hyperparameters as in Table 1.

The transformers were trained using the hyperparameters in
Table 2. The prediction was done using the parameters in Ta-
ble 3. The model’s performance is evaluated on the test set
using two standard metrics: Mean Squared Error (MSE) and
Mean Absolute Percentage Error (MAPE).

4.2. Experiment results
Looking at the experiment results in Table 4, we can see the

performance of all MHSA models being much lower than both
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Prediction Parameters Value
Input length (t0) 140
Horizon 100

Table 3: Hyperparameters used during prediction for the experiments

the Standard Transformer and Simplex algorithm in terms of
mean squared error (MSE). Although the mean absolute per-
centage error (MAPE) seems to indicate performance similar to
that of the Standard Transformer, these results are misleading.
When looking at a plot of the prediction, for example, Figure 2
and Figure 3, we can see that our model fails to accurately pre-
dict the correct values. Plots of all other experiment setups can
be found in Appendix A.

Figure 2: Example of predictions for MHSA model with Euclidean distance
and H = 8 attention heads.

Figure 3: Example of predictions for MHSA model with cosine similarity and
H = 8 attention heads.

When inspecting the attention matrices for these predictions,
we can partly see why this is happening. As previous predic-
tions heavily influence which previous timesteps get attention,
incorrect predictions stack up relatively quickly, causing au-
toregressive predictions to get significantly worse over time.

As an example, we can see in Figure 4 that the incorrect pre-
dictions up till timestep t0 + 11 cause the model to give the ma-
jority of attention to recent moments, instead of using relevant
information. An even worse example can be seen in Figure 5,
where all attention is on recent moments.

5. Discussion

When interpreting the results of our research, there are sev-
eral factors which deserve consideration. Most notably, com-
putational limits heavily influenced the amount of experiments
we were able to conduct. As an effect, it was not possible to
repeatedly perform an experiment, to allow the possibility for
statistical testing using t-tests. These same computational limits
also prevented us from performing a gridsearch for optimal hy-
perparameters. Although unlikely based on our analysis of the
results, we cannot rule out the possibility of better performance
using different hyperparameters.

Figure 4: Attention head for Euclidean distance with H = 1 attention heads at
timestep t0 + 11.

Figure 5: Attention head for Euclidean distance with H = 1 attention heads at
timestep t0 + 3.

Although the predictions were generated autoregressively
one step at a time, we did not explore predicting multiple future
steps simultaneously (i.e., direct multi-step forecasting), which
may yield different results. Future research could focus on ex-
ploring N-step predictions and investigating if this improves
performance.

Another aspect which requires further analysis is the MAPE
values. Although the plots clearly indicate poor performance,
the MAPE values do not show this. The reasons for this dis-
crepancy remain unclear. A possible hypothesis is that MAPE
is less vulnerable for big errors when values approaching zero.

6. Conclusion

This paper investigated the performance discrepancy be-
tween complex transformer models and a simpler traditional
model in time series forecasting. Using the findings suggest-
ing Transformers may not outperform simper approaches on
TSK challenges (Zeng et al., 2023), we focussed on changing
the attention mechanism. We introduced Multi Head Simplex
Attention to try and bridge the gap between Transformer self-
attention and Simplex projection by incorporating distance-
based similarity, causal convolutions, and an explicit cause and
effect shift. Our contribution lies in the novel mechanism and
the analysis comparing its performance against Simplex projec-
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Model Distance metric Number of heads MSE MAPE
MHSA Euclidean 1 139.160 0.080
MHSA Euclidean 2 120.958 0.279
MHSA Euclidean 4 105.915 0.241
MHSA Euclidean 8 80.959 0.268
MHSA Cosine similarity 1 113.555 0.363
MHSA Cosine similarity 2 157.932 0.323
MHSA Cosine similarity 4 134.821 0.319
MHSA Cosine similarity 8 112.892 0.303
MHSA Manhattan 1 146.691 0.436
MHSA Manhattan 2 130.097 0.313
MHSA Manhattan 4 93.717 0.280
MHSA Manhattan 8 110.355 0.288
MHSA Infinity norm 1 133.183 0.469
MHSA Infinity norm 2 141.015 0.274
MHSA Infinity norm 4 113.182 0.256
MHSA Infinity norm 8 90.345 0.259
Standard Transformer with
convolutional attention

- 8 1.116 0.267

Simplex Projection - - 1.031 0.422

Table 4: Experiment results with Euclidean, Cosine Similarity, Mahattan distance and the infinity norm as distance metric and H ∈ {1, 2, 4, 8} attention heads. Also
included are the standard Transformer with convolutional attention as introduced by Li et al. (2019) and Simplex Projection as baselines to compare with. Evaluation
is done using mean squared error (MSE) and mean absolute percentage error (MAPE).

tion and a standard convolutional attention Transformer base-
line.

Our experiments on a synthetic dataset show that the MHSA
performance is worse than both the Simplex Projection and con-
volutional attention baseline in terms of MSE. Our analysis sug-
gests that the performance of MHSA could be due to the error
accumulation in the autoregressive forecasting process.

The main takeaway is that trying to customize the attention
mechanism to work more like Simplex projection is not the
right way forward if the goal is to improve the performance of
a Transformer model when forecasting simple synthetic times
series. This approach appears to be too naive, and indicates that
more sophisticated approaches are necessary.

Future research could explore the use of more diverse train-
ing data. In our study, the models were trained on variations of
sine functions, which are relatively simplistic and highly corre-
lated. In contrast, real-world time series data tend to be more
complex and less structured. This increased diversity could po-
tentially enhance the Transformer’s ability to generalise and ex-
tract meaningful patterns. Furthermore, access to a larger and
more varied dataset may help the Transformer better capture un-
derlying dynamics that are not present in basic sine functions.

7. Code

To conduct our experiments, we built upon the work from
Baljan and Rasoolzadeh Baghmisheh (2024). We implemented
additional Python classes for MHSA, the encoder block con-
taining it, and a Simplex Transformer class which connects the
decoder block with the fully connected layer. In addition, we
implemented the Simplex Algorithm. The experiments are set

up as Jupyter notebooks, adhering to the foundations as laid out
in the original framework.

The complete source code is available at https://github.
com/FinnAlberts/attention_analysis for further refer-
ence.

For the Standard Transformer with convolutional attention
we use as a baseline, we adapted code based on the work from
Li et al. (2019), to match the hyperparameters from our ex-
periment setup. The complete source code with these adap-
tations is available at https://github.com/FinnAlberts/
Transformer_Time_Series.
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Appendix A. Plots of experiment results

Figure A.6: Example of predictions for MHSA model with Euclidean distance
and H = 1 attention heads.

Figure A.7: Example of predictions for MHSA model with Euclidean distance
and H = 2 attention heads.

Figure A.8: Example of predictions for MHSA model with Euclidean distance
and H = 4 attention heads.

Figure A.9: Example of predictions for MHSA model with Euclidean distance
and H = 8 attention heads.

Figure A.10: Example of predictions for MHSA model with cosine similarity
and H = 1 attention heads.

Figure A.11: Example of predictions for MHSA model with cosine similarity
and H = 2 attention heads.

Figure A.12: Example of predictions for MHSA model with cosine similarity
and H = 4 attention heads.
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Figure A.13: Example of predictions for MHSA model with cosine similarity
and H = 8 attention heads.

Figure A.14: Example of predictions for MHSA model with Manhattan dis-
tance and H = 1 attention heads.

Figure A.15: Example of predictions for MHSA model with Manhattan dis-
tance and H = 2 attention heads.

Figure A.16: Example of predictions for MHSA model with Manhattan dis-
tance and H = 4 attention heads.

Figure A.17: Example of predictions for MHSA model with Manhattan dis-
tance and H = 8 attention heads.

Figure A.18: Example of predictions for MHSA model with the infinity norm
and H = 1 attention heads.

Figure A.19: Example of predictions for MHSA model with the infinity norm
and H = 2 attention heads.

Figure A.20: Example of predictions for MHSA model with the infinity norm
and H = 4 attention heads.

Figure A.21: Example of predictions for MHSA model with the infinity norm
and H = 8 attention heads.

Figure A.22: Example of predictions for Standard Transformer with convolu-
tional attention using H = 8 attention heads.

Figure A.23: Example of prediction by Simplex Algorithm.

8


	Introduction
	Related work
	Methods
	Simplex Algorithm (Baseline)
	Transformer Model (Baseline)
	Transformer with Multi-Head Simplex Attention (MHSA)

	Evaluation
	Experiment setup
	Experiment results

	Discussion
	Conclusion
	Code
	Plots of experiment results

